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Abstract: The partition function of BFSS matrix model is studied for two different

classical backgrounds up to 1-loop level. One of the backgrounds correspond to a membrane

wrapped around a compact direction and another to a localised cluster of D0-branes. It

is shown that, there exist phase transitions between these two configurations - but only in

presence of an IR cut-off. The low temperature phase corresponds to a string (wrapped

membrane) phase and so we call this the Hagedorn phase transition. While the presence of

an IR cut-off seemingly is only required for perturbative analysis to be valid, the physical

necessity of such a cut-off can be seen in the dual super-gravity side. It has been argued

from entropy considerations that a finite size horizon must develop even in an extremal

configuration of D0-branes, from higher derivative O(gs) corrections to super-gravity. It can

then be shown that the Hagedorn like transition exists in super-gravity also. Interestingly

the perturbative analysis also shows a second phase transition back to a string phase. This

is reminiscent of the Gregory-Laflamme instability.
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1. Introduction

Hagedorn Temperature [1] is the “limiting temperature” at which the string partition func-

tion diverges due to an exponential growth in the density of states, which overtakes the

Boltzmann suppression factor. There is some evidence to interpret this temperature as a

phase transition temperature [2 – 5]. Yang-Mills theories are known to have confinement-

deconfinement phase transition, and also they are known to be dual to String Theories with

1/N (for gauge group SU(N)) interpreted as the string coupling constant, gs. It is then
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natural to identify this Hagedorn Transition temperature with confinement-deconfinement

transition [6, 7, 13 – 18]. Above the deconfinement transition the gluon flux tube disinte-

grates. Correspondingly one would expect that the string disintegrates above the Hagedorn

phase transition and is replaced by something else - perhaps a black hole.

It is difficult to study the disintegration of string theory using the perturbative string

formalism. One needs a non-perturbative description where a string can be described in

terms of some other entity. One such description is the BFSS matrix model. In this model

one can construct a classical configuration that looks like a membrane. As a 10-dimensional

object it is a D2 brane of IIA string theory. If one of the space dimensions is compactified,

the D2 brane wrapped around it, is T-dual to a D-string (D1 brane) of IIB string theory.

This in turn is S-dual to an F(fundamental)-string. So on the one hand we can pretend

that this D-string is the fundamental string whose phase transition we are interested in,

and on the other hand this D-string is (T-dual to ) a composite of D0 branes (arranged in

a very specific way). At the phase transition this classical membrane configuration can be

expected to disintegrate so that we end up with just a bunch of localised D0-branes. This

is thus the “S-dual” of the Hagedorn transition. This was what was investigated in in a

qualitative way in [8]. It was shown by computing (in a high temperature approximation)

the one loop free energy, that there is a phase transition from a membrane phase to a

clustered phase. However an IR cutoff was crucial for the calculation. The motivation for

the IR cutoff is roughly that the D0 branes are actually bound (albeit marginally) and so

one expects them to be localised. Two D0 brane potential, at finite temperature, studied

in [9, 10] shows possibility of bound state. Our aim in this paper is to redo the one-loop

analysis carefully without approximations. The net result reaffirms the result of [8], but

with some modifications in the analytical expressions. Interestingly an additional phase

transition is found back to the string phase. The one-loop partition function of strings from

matrix model [19] was also studied extensively in [20 – 22].

Holography [44] has given some new insights into the dynamics and phase structure of

super-symmetric Yang-Mills [11 – 13]. This should also be taken into account. Deformations

of these theories have also been studied [23 – 27]. In fact, motivated by the analysis in [23,

24], the thermal Hawking-Page phase transition [29, 28] in AdS with a “hard wall” [30] has

been studied - the hard wall removes a portion of the AdS near r = 0, which in the gauge

theory corresponds to the IR region. In these models the cutoff is a way to simulate a

boundary gauge theory that is not conformally invariant, i.e. confining. The cutoff radius

is related to the mass parameter of the gauge theory. It has in fact been shown [31] that an

IR cutoff is crucial for the existence of two phases: BPS Dp-branes (more precisely their

near horizon limit which is AdS) and black Dp-branes (AdS black hole), separated by a

finite temperature phase transition. Also [32] has argued (from entropy considerations)

that O(gs) higher derivative corrections to super-gravity must induce a finite horizon to

develop for a configuration of extremal D0-branes. This also acts as an IR cutoff. Based

on all this, the main conclusion of this paper is that an infrared cutoff needs to be included

in the BFSS matrix model if it is to describe string theory.

This is quite understandable from another point of view. Simple parameter counting

shows that the BFSS model, as it stands, cannot be equivalent to string theory. It has only
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one dimensionless parameter N . The other parameter is gYM - which is dimensionful and

just sets the overall mass scale. String theory describingN D0 branes has two dimensionless

parameter N and gs, and a dimensionful parameter ls. The two theories thus cannot be

equivalent, except in some limit gs → 0 (or gs → ∞ - M-theory). For finite gs one needs an

additional parameter on the Yang-Mills side. Thus an IR cutoff L0 introduces a second scale

into the Yang-Mills theory, and thus the ratio of the two scales is a dimensionless parameter

and now the parameter counting agrees. Furthermore, low energies in the matrix model

that describes D0 branes, corresponds in the super-gravity description to short distances,

i.e. regions near the D0 branes, where the dilaton profile corresponds to a large value of

gs. If we include the low energy (IR) region in the configuration space of the Yang-Mills

(matrix model) theory, we are forced to include the effects of finite gs. The IR cutoff is an

additional parameter that signifies our ignorance of (large) strong coupling effects. With

an IR cutoff we can maintain gs at a finite (small) but non-zero value. What actually

happens in this region (i.e. close to D0 branes) due to strong coupling effects of large gs is

not fully known, but as mentioned above [32] has a plausible proposal based on entropy

arguments. The suggestion is that a finite size horizon develops. This if true, vindicates

the introduction of an IR cutoff. Note that another way of making the functional integral

finite is to give a mass to the scalar fields - thereby removing the zero mode. The matrix

model corresponding to the BMN pp wave limit [33] in fact has such a mass term with the

mass being a free parameter. This is reminiscent of the N=1* theories studied in [24] and

these techniques have been applied to the BMN matrix model [34]. We can therefore take

an agnostic attitude regarding the origin of the cutoff and treat it as the extra parameter

necessary to match with string theory for finite gs. It should correspond to the fact that

the D0-brane bound state must have a finite size. This is not easy to see in the BFSS

matrix model, in perturbation theory, because of the flat directions in the potential.

As mentioned above there seems to be another high temperature string phase. This

is reminiscent of the T → 1/T symmetry that has been discussed by many authors [35 –

38]. The perturbative analysis shows a second phase transition to a string phase at very

high temperatures. This is reminiscent of Gregory-Laflamme instability. We comment on

this briefly at the end. We show that the entropic arguments that motivate the Gregory-

Laflamme transition can also be made for extremal black holes with finite size horizon such

as the Reissner Nordstrom black holes.

This paper is organised as follows. Section 2 is a brief review of some relevant aspects

of the BFSS matrix model. Section 3 contains the perturbative one-loop analysis. Section

4 contains the analysis using the super-gravity dual. Section 5 contains some conclusions.

2. M theory

M theory is the strong coupling limit of type IIA string theory. In this limit, it behaves

as an eleven dimensional theory in an infinite flat space background. At low energy, it

behaves as a eleven dimensional super-gravity. It also has membrane degrees of freedom

with membrane tension 1
(l11p )3

, where l11p is eleven dimensional Planck length. As mentioned

in the introduction these membranes can be wrapped along compact directions to form
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strings and a study of the partition function of M theory may throw light on Hagedorn

Transition, where strings are a particular configuration or phase of more fundamental

degrees of freedom.

2.1 BFSS matrix model

M theory in infinite momentum frame (IMF) are described by D0-branes only, as proposed

in [39]. The action is given by dimensional reduction of 10 dimensional U(N) Super Yang-

Mills’ (SYM) theory to zero space dimension (in N → ∞ limit). Where the space co-

ordinates of N D0-branes are given by eigenvalues of N ×N matrices Ai, i = 1, · · · , 9 of

the dimensionally reduced SYM.

Generally the infinite momentum frame is chosen by considering the eleventh direc-

tion, X11 to be compact (radius, R11) and then subsequently boosting the system in this

direction. The negative and zero Kaluza-Klein modes decouple, and can be integrated

out. These positive Kaluza-Klein modes have non-zero RR charge from ten dimensional

view point (which is type IIA string theory by definition, with gsls = R11), and they are

identified as the D0-branes of the theory. In the end, we must let R11 and N/R11 tend to

infinity to get uncompactified infinite momentum limit.

2.2 DLCQ M-theory

In the method of Discrete Light Cone Quantisation(DLCQ) [41] we compactify a light-like

coordinate X− instead of X11. This theory is valid for any value of N . The idea is that in

the large N limit this becomes equivalent to M-theory. For finite N this is a very simple

model as shown in [42].

2.3 Relation between DLCQ M-theory and the BFSS matrix model

We will review Seiberg’s [42] arguments on the relation between DLCQ M-Theory and

BFSS Matrix Model.

In DLCQ, we compactify a light-like circle which corresponds to,

(
X11

X0

)
∼
(
X11

X0

)
+

(
R−

√
2

−R−

√
2

)
(2.1)

where X11 is the longitudinal space-like direction and X0 is the time-like direction in the

11 dimensional space-time. We can consider it as a limit of compactification on a space-like

circle which is almost light like

(
X11

X0

)
∼
(
X11

X0

)
+



√

R−

2 +R2
11

−R−

√
2


 ≃

(
X11

X0

)
+

(
R−

√
2

+
R2

11√
2R−

−R−

√
2

)
(2.2)

with R11 ≪ R−. The light-like compactification (2.1) is obtained from (2.2) as R11 → 0.

This compactification is related by a large boost with

βv =
R−

√
(R−)2 + 2R2

11

≃ 1 −
(R11

R−

)2
(2.3)
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to a spatial compactification on
(
X11′

X0′

)
∼
(
X11′

X0′

)
+

(
R11

0

)
(2.4)

where prime denotes boosted coordinates.

The longitudinal boost of the light-like circle (eq. (2.1)) rescales the value of the radius

of compactification, R−′

= δ−1R−, where δ =
√

1+βv

1−βv
. It also rescales the value of light-

cone energy P− similarly. Therefore P− is proportional to R− i.e. P− ∼ R−M2
p . The

factor of Mp = (l11p )−1, the 11 dimensional Planck mass is introduced on dimensional

grounds. For small R11, the value of P− in the system with the almost light-like circle is

also proportional to R− (an exception to that occurs when P− = 0 for the light-like circle;

then P− can be non-zero for the almost light-like circle). The boost (eq. (2.3)) rescales P−

to be independent of R− and of order R11 (if originally P− = 0, the resulting P− after the

boost can be smaller than order R11). So, P
′− ∼ R11M

2
p , where R−′

= R11 = R−/δ.

Let us consider M theory compactified on light-like circle (eq. (2.1)) as the R11 → 0

limit of the compactification on an almost light-like circle (eq. (2.2)) or as the limit of

boosted circle (eq. (2.4)). Notice R11 → 0 corresponds to a large boost, βv → 1 and δ → ∞.

The analysis shows that, the DLCQ of M theory [41] is related to the compactification on a

small spatial circle i.e. the BFSS Matrix model [39]. For small R11 the theory compactified

on (2.4) is weakly coupled string theory with string coupling gs = (R11Mp)
3

2 and string

length l2s = (R11M
3
p )−1. We see in the limit R11 → 0 the string length ls → ∞, which

yields a complicated theory. However P
′− also goes to zero (if P− is initially of O(1)), so

we are only interested in very low “energy” states of the boosted theory, and this simplifies

things. This can be made clear by rescaling parameters. We have to replace DLCQ M

theory by another M theory, referred to as M̃ theory (BFSS Matrix theory) with Planck

mass M̃p compactified on the spatial circle of radius R11. The relations between parameters

of the two theories is obtained by keeping P ′− ∼ R11M̃p
2

fixed with the limit R11 → 0 and

M̃p → ∞, we get,

R11M̃p
2

= R−M2
p (2.5)

And as boost does not affect transverse directions,

MpRi = M̃pR̃i (2.6)

where Ri are any length parameter in transverse direction. So,

M̃p

Mp
= δ1/2

g̃s

gs
= δ−3/4

α̃′

α′ = δ−1/2 (2.7)

So with finite R− andMp, the corresponding string theory in BFSS model is weakly coupled

and with very large string tension (Notice as R11 → 0 or δ → ∞, both g̃s and l̃s goes to

zero). So this theory is simple.
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If we compactify one of the transverse direction with radius Ri and consider the T

dual along this direction, the T dual radius is given by R∗
i = α′

Ri
. So the scaling gives,

R̃∗
i = R∗

i . (2.8)

In this paper we will calculate partition function of the DLCQ theory using the BFSS

matrix model. Thus we use parameters (denoted with tilde) which are related to that of

DLCQ by a scaling, as discussed above.

2.4 The BFSS matrix model action

The bosonic part of the action for N D0-branes is given by,

S =
1

2g̃s

∫
dt

l̃s
Tr

{
(DtX

i)2 +
1

4π2 l̃4s
[Xi,Xj ]2

}
(2.9)

where Dt = ∂t + iA0. Which is basically 10d U(N) SYM action (with Ai = Xi

2πel2s
) reduced

to 1d, with 1d g̃2
YM = 1

4π2

egs

el3s
.

The parameters of DLCQ theory are radius R− and the eleven dimensional Planck

length l11p . While the parameters of Matrix Model are R11 and l̃11p . The membrane tension

is given by 1

(2π)2(el11p )3
. This fixes g̃2

s = (R11

el11p

)3 and also α̃′ =
(el11p )3

R11 . These relations also

imply that g̃s l̃s = R11. Where g̃s is the Type IIA string coupling constant and 2πα̃′, the

inverse string tension with α̃′ = l̃2s . These parameters are related to that of DLCQ by the

scaling discussed.

As mentioned in the introduction, this parameter count in the matrix model is mis-

leading. Written in terms of Aµ it clearly has only one dimensionless parameter N and

one scale, set by gYM. So the dynamics depends only on N , i.e. all physical quantities will

scale with the appropriate power of gYM times some (dimensionless) function of N .

2.5 Construction of membranes and strings

In matrix theory a membrane is described in the large N limit by the configuration [39, 40]

Xi = L̃ip , Xj = L̃jq (2.10)

where p and q are matrices satisfying,

[p, q] =
2πi

N
(2.11)

We will consider the configuration given by

X9 = L̃9p (2.12)

which describes a membrane wrapped around X9 with other edges free. If we consider

Xi, i 6= 9 as periodic functions of q, all of form exp(imq), then we get a closed string. Let

us construct this string action in matrix model.
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Let us assume that X9 is a compact dimension of radius L̃9, assumed to be small.

When a membrane is wrapped around X9 we get a D string(to get F string we have to

wrap it around the X11) with inverse tension β̃′ =
(el11p )3

eL9
, and string coupling g̃sβ′ = (eL9)3

(el11p )3
.

As shown in [8], matrix model action, at zero temperature, with background configura-

tion given by membranes constructed in the above way, matches exactly with the string the-

ory action in light cone frame. The bosonic part of the action used in this paper is given by

S =
1

2g̃s

∫
dt

l̃s

∫ 2πeL∗

9

0

dx

2πL̃∗
9

Tr

{
(DtX

i)2 − (DxX
i)2 + (F09)

2 +
1

4π2 l̃4s
[Xi,Xj ]2

}
(2.13)

Which is a 1 + 1 dimensional action, obtained by dimensional reduction of 9 + 1 dimen-

sional U(N) Super-symmetric Yang-Mills action and subsequently taking T-dual along the

compact direction X9 of radius L̃9. Dx = ∂x + iA9 is the covariant derivative in a direction

X∗
9 ,which is T-dual to X9, and has a radius L̃∗

9 = eα′

eL9

. x is the co-ordinate along a D1

brane wound around X∗
9 .

Following Taylor’s [43] calculation we have,

A9 =
1

2πα̃′

∞∑

n=−∞

exp

(
inx

L9

α̃′

)
X9

0n (2.14)

Where X9
00 = L̃9p is the original D0 brane matrix of uncompactified theory. Thus Dx is

given by

Dx = ∂x ⊗ I + I ⊗ L̃9

α̃′N
∂q (2.15)

which acts on eigen-functions

e
ir x

eL∗

9 eimpeinq (2.16)

with eigen values rN+n
N eL∗

9

. This action(2.13), in the large N limit, matches with closed string

action [8], where the effective radius of world-sheet is NL̃∗
9 and inverse string tension is

2πβ̃′, β̃′ = L̃∗
9R

11. Turning on F09 corresponds to addition of F-strings. The commutator

terms are zero if we restrict the matrices Xi to be Xi(x, q, t) i.e. without any p dependence.

p dependence corresponds to fluctuations in matrix model that are not string-like.

2.5.1 Two phases

Phase 1: The background X9 = L̃9p gives a configuration where the D0 branes spread out

to form a string wound in the compact direction.

Phase 2:The background X9 = 0 gives a phase where the D0-branes are clustered.

We will consider these two backgrounds to calculate free energy up to one loop level,

and compare to find any signature of phase transition. It is important to have a precise

definition of the measure in the functional integral. This is described in appendix A.

3. One loop free energy

For convenience we will drop the tilde sign on the parameters and put it back in the end.

– 7 –
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The details are given in the appendices B and C. We summarise the results here. We

will first calculate action for a SUSY scalar field on S1 × S1, which is then related to the

action (2.13) we are concerned in the following subsection. We start with the bosonic part:

Consider the Euclidean action,

S =
1

gs

∫ β

0

dt

ls

∫ 2πL∗

9

0

dx

2πL∗
9

{(∂tX)2 + (∂xX)2} (3.1)

Where t and x directions are both periodic with periods β and 2πL∗
9 respectively, then,

X =
√

2πL∗
9β

∞∑

n=−∞

∞∑

m=−∞

Xnme
− 2πi

β
nte

− i
L∗

9

mx
(3.2)

X is real implies X∗
nm = X−n−m. So we get,

S =
β

2gsls

√
2πL∗

9β
∞∑

n=−∞

∞∑

m=−∞

[(
2πn

β

)2

+

(
m

L∗
9

)2]
XnmX−n−m (3.3)

Now we can calculate partition function easily (see appendix B). We get,

Z =
L0√

2πgslsβ
η(i

β

2πL∗
9

)−2 (3.4)

where η(x) is Dedekind’s Eta function and L0 is cut-off introduced in zero mode integral.

The Partition function in terms of ratio of radii of two S1, ie. x = β
2πL∗

9

,

Z =
L0√

4π2gslsL∗
9

1√
x
η(ix)−2 (3.5)

Dedekind’s Eta Function has a symmetry given by,

η(ix) =
1√
x
η(i/x) (3.6)

Which makes the partition function invariant under the transformation x→ 1/x

For low temperature, β
2πL∗

9

≫ 1, the free energy takes the form,

F (T ) = − 1

β
ln(Z) ≃ − 1

12L∗
9

− 1

2
T ln

(
L2

0

2πgsls
T

)
(3.7)

which shows F (0) 6= 0 due to the presence of zero-point energy,

F (0) = − 1

12L∗
9

=
∞∑

n=1

n

L∗
9

(3.8)

using Zeta function regularization. The high temperature expansion, β
2πL∗

9

≪ 1 is given as,

F (T ) = −π
2L∗

9T
2

3
+
T

2
ln

(
8π3gslsL

∗2
9

L2
0

T

)
(3.9)

– 8 –



J
H
E
P
0
8
(
2
0
0
8
)
0
1
9

Now we add in the fermions:

The Minkowaski action is given by,

SM =
−i
gs

∫
dtM
ls

∫ 2πL∗

9

0

dx

2πL∗
9

{(∂tMX)2 − (∂xX)2 + ψ̄(iγµ)∂µψ} (3.10)

ψα, α = 1, 2 are two components (real) of two dimensional Maiorana Spinor ψ.

γ matrices are given by,

γ0 =

(
0 i

−i 0

)
, γ1 =

(
0 i

i 0

)
(3.11)

γµ, γν = 2gµν , g00 = −g11 = 1 (3.12)

Fermionic part of the action can be rewritten as,

ψ̄(iγµ)∂µψ = iψ1(∂tM − ∂x)ψ1 + iψ2(∂tM + ∂x)ψ2 (3.13)

Now to go to Euclidean action at finite temperature we have to take tM → it,and t compact

with periodicity β.We get,

S = − 1

gs

∫ β

0

dt

ls

∫ 2πL∗

9

0

dx

2πL∗
9

{(∂tX)2 + (∂xX)2 −ψ1(∂t − i∂x)ψ1 − ψ2(∂t + i∂x)ψ2} (3.14)

Where X is periodic in both t and x, ψα is anti-periodic in t and periodic in x.

X = (2πL∗
9β)1/2

∞∑

n=−∞

∞∑

m=−∞

Xnme
− 2πi

β
nt
e
− i

L∗

9

mx
(3.15)

ψα = (2πL∗
9β)1/4

∞∑

n=−∞,n=odd

∞∑

m=−∞

ψα,nme
−πi

β
nt
e
− i

L∗

9

mx
(3.16)

X and ψα is real implies X∗
nm = X−n−m and ψ∗

α,nm = ψα,−n−m. Xnm is a dimensionless

c-number and ψα,nm is a dimensionless Grassmann number.

So the action becomes,

S = − β

2gsls

∞∑

n=−∞

∞∑

m=−∞

(2πL∗
9β)

[(
2πn

β

)2

+

(
m

L∗
9

)2]
XnmX−n−m

− β

2gsls

∞∑

n=−∞,n=odd

∞∑

m=−∞

{
i
√

(2πL∗
9β)

[
πn

β
+ i

m

L∗
9

]
ψ1,nmψ1,−n−m +

i
√

(2πL∗
9β)

[
πn

β
− i

m

L∗
9

]
ψ2,nmψ2,−n−m

}
(3.17)

For Bosonic part of the action we will get same partition function (ZB) as previous section.

Each ψα contributes same amount to partition function, ZF = ZF1ZF2 = Z2
F1 = Z2

F2. We

get (see appendix C),

ZF = Z2
Fα = 2

η(2ix)

η(ix)

2

(3.18)
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Where x = β
2πL∗

9

.

So SUSY partition function,

Z = ZBZF = Z =
2L0√

4π2gslsL∗
9

1√
x

η2(2ix)

η4(ix)
(3.19)

Compare with,

ZB =
L0√

4π2gslsL
∗
9

1√
x
η(ix)−2 (3.20)

Now Z does not have the x → 1/x symmetry, which is natural as two directions are

not similar due to different boundary condition. At low temperature, i.e. x → ∞, Z =

2L0

√
( 1

gsls
)

2πβ , which is the partition function for a super-symmetric free particle (the zero

mode).

3.1 Free energy for two phases of matrix model

We use Background Gauge Fixing Method (see appendix D) to calculate the free energy

up to one loop for the action (2.13). The ghost terms effectively cancels the two gauge

fields, and remaining theory is effectively that of 8 SUSY scalar fields, except the fields

are now U(N) matrices in adjoint representation and the derivatives are little complicated

than that for scalar fields. Now in phase 2 (clustered) the covariant derivatives reduces to

ordinary derivatives. The partition function for phase 2 (clustered) is,

Z2 = e−βF2 =





2L̃0√
4π2g̃s l̃sL̃

∗
9

1√
x

η2(2ix)

η4(ix)





8N2

(3.21)

βF2 = −8N2ln(b) + 8N2ln(
√
x) − 16N2ln(η(2ix)) + 32N2ln(η(ix)) (3.22)

The N2 comes as the eigenvalues are independent of m and n (see eq. (2.16)). For phase 1

(string) the background of A9 effectively changes the radius L̃∗
9 to NL̃∗

9 (see section (2.5)),

and the partition function for phase 1 is given by,

Z1 = e−βF1 =





2L̃0√
4π2g̃s l̃sNL̃∗

9

1√
x
N

η2(i2x
N )

η4(i x
N )





8N

(3.23)

βF1 = −8Nln(b) + 8Nln(
√
x) − 16Nln

(
η

(
i
2x

N

))
+ 32Nln

(
η

(
i
x

N

))
(3.24)

The N comes as eigenvalues are independent of m (see eq. (2.16)). Where x = β

2πeL∗

9

,

b = 2eL0q
4π2egs

els eL∗

9

= 2eL0√
4π2 eβ′

.

3.1.1 Low temperature expansion

Consider x≫ 1 and x/N ≫ 1,

βF1 ≃ −8Nln(b) + 8Nln(
√
x) (3.25)

βF2 ≃ −8N2ln(b) + 8N2ln(
√
x) (3.26)
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Using,

η(ix) ≃ e−
πx
12 for x≫ 1 (3.27)

So βF1 < βF2, i.e. the string phase will be favoured at low temperature if b/
√
x ≤ 1.

We can expect a phase transition from the string phase to the clustered phase as the

temperature is increased from zero, at x = b2. For the transition temperature to lie in the

validity region of the low temperature expansion: b ≫
√
N . Let us call this temperature

as TH .

TH =
πR11

2L̃2
0

(3.28)

In terms of the DLCQ parameters,

TH =
πR−

2L2
0

(3.29)

using the scaling properties discussed in section (2.3). If we now take the limit L0 → ∞, the

transition temperature TH → 0. So, it is essential to have a finite value of L0 to get phase

transition at finite temperature. This is the temperature at which there is a deconfinement

transition in the Yang-Mills’ model, which should be same as Hagedorn transition.

3.1.2 High temperature expansion

Consider x≪ 1,

βF1 ≃ 8Nln

(
2N

b

)
− 8Nln(

√
x) − 2N2π

x
(3.30)

βF2 ≃ 8N2ln

(
2

b

)
− 8N2ln(

√
x) − 2N2π

x
(3.31)

Using,

η(ix) ≃ e−( π
12x

+ln
√

x) for x≪ 1 (3.32)

We see that, at x > 4
b2 , the clustered phase is favoured but at very high temperature we

can again have a string phase. This “Gregory-Laflamme” kind of transition will occur at

x = 4
b2
N−1/N ≃ 4

b2
(For large N , N−1/N ∼ 1). This is also consistent with b ≫

√
N . Let

us call this temperature as TG.

TG =
L̃2

0

8π3R11L̃∗2
9

(3.33)

In terms of the DLCQ parameters,

TG =
L2

0

8π3R−L∗2
9

(3.34)

using the scaling properties discussed in section 2.3. In this case, note L0 → ∞ implies

TG → ∞.

Let us express this in terms of the parameters of Yang-Mills theory: The infrared cutoff

on A = X
el2s

is
eL0

el2s
= 1

eL∗

0

. Thus we get (up to factors of 2π)

TG =
l̃4s

R11L̃∗2
9 L̃

∗2
0

=
l̃3s

g̃sL̃∗2
9 L̃

∗2
0

=
1

g̃2
Y M0+1

1

L̃∗2
9 L̃

∗2
0

=
1

g̃2
Y M1+1

1

L̃∗
9L̃

∗2
0

(3.35)
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4. Review of super-gravity results

The BFSS matrix model with tilde parameters is supposed to be a non-perturbative descrip-

tion of M-theory ( or IIA String Theory). But the idea of gravity dual [44] of Yang-Mills’

theories allows us to relate the matrix model to super-gravity (with tilde parameters). One

can use this to infer properties of the matrix model.

The Yang-Mills’ coupling associated with D0 brane action defined in section (2.4) is

given by g2
YM = 1

4π2

gs

l3s
= g̃2

YM = 1
4π2

egs

els
3 is finite in the limit g̃s → 0 and l̃s → 0, as gs and ls

are finite parameters. This is the decoupling limit discussed in [44, 42, 45]. In this limit, if

we also take N large, the theory is dual to Type II super-gravity solution discussed in [44].

Two classical solutions of Type II super-gravity are: (1) the decoupling limit of black D0

branes and (2) the BPS D0 branes. In a recent study [31] phase transition of these two

solutions were discussed. It was shown that the IR cut-off plays a crucial role in phase

transition. As mentioned earlier this is motivated by the work of [30, 23, 24]. We will redo

the analysis of this paper [31] here and try to explain the physical origin of IR cutoff used

in [31]. The super-gravity solutions have tilde parameters, but for convenience we will drop

the tilde signs and put them back at the end.

Ideally, we should construct the super-gravity solution corresponding to the wrapped

membrane. We reserve this for the future. Here we are only interested in understanding the

nature of the phase transition and the role of the IR cutoff, so we will just use the solution

for N coincident D0-branes used also in [31]. In the decoupling limit, (with U = r
l2s

= fixed,

where r is radial co-ordinate defined in the transverse space of the brane. U also sets the

energy scale of the dual Yang-Mills theory.) the solution for N coincident black D0-branes

in Einstein frame is given by,

ds2Ein =
α′

2πgYM



−

U
49

8

(g2
YMd0N)

7

8

(
1−U7

H

U7

)
dt2+

(g2
YMd0N)

1

8

U
7

8


 dU2

1− U7

H
U7

+U2dΩ2
8





, (4.1)

eφ = 4πg2
YM

(
g2
YMd0N

U7

) 3

4

, (4.2)

FU0 = −α′ 1
2

7U6

4π2d0Ng4
YM

. (4.3)

where d0 = 27π9/2Γ(7/2) is a constant. Simply setting UH = 0 gives the solution for N

coincident BPS D0-branes.

The Euclidean action can be obtained by setting t = iτ . The Euclidean time τ has a

period

β =
4πgYM

√
d0N

7U
5

2

H

(4.4)

in order to remove the conical singularity. This is the inverse Hawking temperature of the

black D0 brane in the decoupling limit.
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Now the on-shell Euclidean action for the two solutions can be calculated and gives,

Iblack =
73

16

V (Ω8)β

16πG′
10

∫ Uuv

UH or UIR

U6dU (4.5)

Ibps =
73

16

V (Ω8)β
′

16πG′
10

∫ Uuv

UIR

U6dU (4.6)

where G′
10 = α′−7G10 = 27π10g4

YM is finite in the decoupling limit. Uuv is introduced to

regularise the action and is taken to ∞ in the end. The temperature of BPS branes β′ is

arbitrary and can be fixed by demanding the temperature of both the solutions to be same

at the UV boundary Uuv, which gives β′ = β

√
1 − U7

H
U7

uv
. UIR is a IR cut-off which removes

the region U < UIR of the geometry. The integration in the action starts from UIR for

BPS solution and, UIR or UH for the black brane solution depending on UH < UIR or

UH > UIR respectively. If we put UIR = 0 i.e. in absence of the IR cut-off, comparison of

the actions (eqs. (4.5), (4.6)) shows that there is no phase transition, and the black brane

phase is always favoured. Let us consider the case UH > UIR,

∆Ibulk = lim
Uuv→∞

(Iblack − Ibps) =
72

16

V (Ω8)β

16πG′
10

(
− 1

2
U7

H + U7
IR

)
(4.7)

Which shows a change in sign as we increase the temperature i.e. UH (eq. (4.4)). The

system will undergo a phase transition (“Hawking-Page Phase transition”) from BPS brane

to Black brane solution at U7
H = 2U7

IR. Actually, we should also consider Gibbons-Hawking

surface term for careful analysis (as done in [31]) which corrects the transition temperature

by some numerical factor given by,

βcrit =
4πg̃YM

√
d0N

7(49
20 )5/14 Ũ

5/2
IR

(4.8)

We see a IR cutoff is essential to realize a phase transition, (as ŨIR → 0, βcrit → ∞) so to

get confinement-deconfinement phase transition in dual super Yang-Mills theory we have

to introduce a IR cutoff.

As mentioned in the introduction, one possible mechanism for the origin of the cutoff

for D0 branes can be understood from the analysis of [32]. It was shown that the higher

derivative corrections to super-gravity introduce a finite horizon area for extremal D0 brane

solution which is otherwise zero. The multigraviton states (with total N units of momentum

in the 11th direction) and the single graviton state seem to both be microstates of the same

black hole when interaction effects higher order in gs are included. Radius of the horizon

developed due to higher derivative corrections is R ∼ l̃sg̃
1/3
s . So we can get an estimate of

IR cutoff by identifying R with the IR cutoff in our case, ŨIR = R
el2s

∼ eg1/3

s
els

∼ g̃
2/3
YM, which is

finite in the scaling limit. If we plug in this value of ŨIR in eq. (4.8), we get

βcrit =
4π

√
d0N

7(49
20 )5/14 g̃

2/3
YM

∼ 1

ŨIR

(4.9)
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In case of D1 brane system, which is just T dual to the system studied above also

shows that a IR cutoff is required for phase transition [31]. We were unable to find a

analysis like [32] corresponding to wrapped membrane system, which we need to get an

estimate of the IR cutoff.

4.1 Gregory-Laflamme transition

In our calculation we find a temperature TG, where the D0-branes spread out uniformly

along the compact space. This configuration is just the one that is favoured at very low

temperatures. It is not clear whether this perturbative result is reliable. However, a similar

phase transition exists in the dual super-gravity theory, known as “black hole-black string”

transition or Gregory-Laflamme transition [11, 12, 46, 47, 49, 50]. It is shown in [11], that

the near horizon geometry of a charged black string in R8,1 × S1 (winding around the S1)

develops a Gregory-Laflamme instability at a temperature TGL ∼ 1
L2gYM

√
N

, where L is the

radius of S1 and gYM is 1+1 dimensional Yang-Mills’ coupling. Below this temperature the

system collapses to a black-hole. In the weak coupling limit, the dual 1+1 SYM theory also

shows a corresponding phase transition by clustering of eigenvalues of the gauge field in the

space-like compact direction below the temperature, T
′

GL ∼ 1
L3g2

YM
N

, as shown numerically

in [11]. This should be compared to the perturbative result (eq. (3.35)) TG ∼ 1
g2

YM
(L∗

0
)2L∗

9

.

So the presence of high temperature string phase in our model must correspond to some

kind of “Gregory-Laflamme” transition in dual super-gravity. This is (at least superficially)

independent of the issue of any classical instability. This is because both solutions may be

locally stable, but at finite temperatures it is possible to have a first order phase transition

to the global minimum.

In our perturbative result, the high temperature phase is a string rather than a black

string i.e. it is the same as the low temperature phase. The question thus arises whether

Gregory-Laflamme transitions can happen for extremal objects. We can give a heuristic

entropy argument to show Gregory-Laflamme kind of transition is also possible for extremal

system. In the original argument [48], it was shown that for extremal branes there is no

instability. However, these systems had zero horizon area. Instead, we will here consider

a 5 dimensional extremal RN black hole with a large compact direction, and the same

solution with the mass smeared uniformly along the compact direction (“RN black ring”).

The metric, ADM mass (M5) and entropy (S5) for a 5d extremal RN black hole solution

is given by (where the compact direction is approximated by a non-compact one),

ds25 = −
(

1 − r2e
r2

)2

dt2 +

(
1 − r2e

r2

)−2

dr2 + r2dΩ2
3 (4.10)

M5 =
3π

4G5
r2e (4.11)

S5 =
2π2r3e
4G5

=
π2

2

(
4

3π

)3/2

G
1/2
5 M

3/2
5 (4.12)

where G5 is 5d Newton’s constant. Similarly, we can write the metric for 5d extremal RN

Black ring, which when dimensionally reduced gives a 4d extremal RN black hole. The
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metric, ADM mass (M(4×1)) and entropy (S(4×1)) is given by,

ds2(4×1) = −
(

1 − Re

r

)2

dt2 +

(
1 − Re

r

)−2

dr2 + dx2 + r2dΩ2
2 (4.13)

M(4×1) =
Re

G4
(4.14)

S(4×1) =
4πR2

e × 2πL

4G5
=

1

2
G5

M2

L
(4.15)

where G4 = G5

2πL is 4d Newton’s constant and L is the radius of the compact direction x.

If we consider M5 = M(4×1) = M and compare the entropy,

S5

S(4×1)
=

16

9

L

re
(4.16)

So, when radius of the compact direction is greater than the radius of the 5d black hole

horizon, the black hole solution is entropically favoured. As we increase the horizon radius,

there may be phase transition when horizon size becomes of the order of the radius of

the compact dimension, above which the “string” solution is entropically favoured. Our

analysis is a simple entropy comparison. As mentioned above, this is independent of the

classical stability issue, that was studied in detail in [48]. Therefore, extremal solutions

with a finite horizon size may also show a Gregory-Laflamme kind of transition. This needs

further study.

5. Conclusion

In this paper, the finite temperature phase structure of string theory has been studied

using the BFSS matrix model which is a 0 + 1 Super-symmetric Yang-Mills (SYM) theory.

This was first studied in perturbation theory. This was actually a refinement of an earlier

calculation [8] where some approximations were made. The result of this study is that

there is a finite and non zero phase transition temperature TH below which the preferred

configuration is where the D0 branes are arranged in the form of a wrapped membrane

and above which the D0 branes form a localised cluster. It is reasonable to identify this

temperature with the “Hagedorn” temperature, which was originally defined for the free

string. We have found that TH ∼ 1
L0

, where L0 is the IR cutoff of the Yang-Mills theory

which needs to be introduced to make the calculations well defined.

The 0 + 1 SYM has a dual super-gravity description. Here also it is seen that in the

presence of an IR cutoff there is a critical temperature above which the BPS D0 brane is

replaced by a black hole.

Simple parameter counting shows that the BFSS matrix model needs one more di-

mensionful parameter if it is to be compared with string theory,so the IR cutoff L0 can be

thought of as one choice for this extra parameter. It makes the comparison well defined by

effectively removing the strongly coupled region of the configuration space in SYM as well

as in super-gravity. A physical justification for this (beyond parameter counting) comes

– 15 –



J
H
E
P
0
8
(
2
0
0
8
)
0
1
9

from the work of [32]. It is shown there that the entropy matching requires even the ex-

tremal BPS configuration of D0-branes to develop a horizon, due to higher derivative string

loop corrections to super-gravity. This is an issue that deserves further study.

Finally, the perturbative result shows a second phase transition at a higher temper-

ature, back to a string like phase. This could be an artifact of perturbation theory. On

the other hand, it is very similar to the Gregory-Laflamme instability and there is also

some similarity in the expressions obtained in [11] for the critical temperature. This also

requires further study.
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A. Defining measure for N = 2 SUSY in 1D

We define measure such that
∫
DxDψ∗Dψexp− π

∫ β

0
dt

(
x2

2
+ ψ∗ψ

)
= 1 (A.1)

Where x(t) is a bosonic variable,and ψ(t) is its super-partner.The SUSY transformation is

given by,

δx = ǫ∗ψ + ψ∗ǫ; δψ∗ = −ǫ∗x; δψ = −ǫx. (A.2)

where ǫ∗ and ǫ are two infinitesimal anti commuting parameter. From these definition we

can define the measure

DxDψ∗Dψ ≡ dx0

∞∏

n=1

(dxndx−n)dψ∗
0dψ0

∏

m>0

dψ∗
mdψ

∗
−mdψmdψ−m (A.3)

The Fermionic measure in terms of ψ1 and ψ2,where ψ = ψ1 + iψ2is given by,

Dψ∗Dψ ≡ idψ10dψ20

∏

m>0

dψ1midψ
∗
1mdψ2midψ

∗
2m (A.4)

where x(t+β) = x(t); xn are Fourier expansion co-efficient for x.ψm are Fourier expansion

co-efficient for ψ(t),m runs over all integers for periodic boundary condition,but takes only

odd values for anti-periodic boundary condition.

x(t) =
∞∑

n=−∞

xne
− 2πi

β
nt (A.5)

ψ(t) =
∞∑

n=−∞

ψne
− 2πi

β
ntfor periodic boundary condition (A.6)

=

∞∑

n=−∞,odd

ψne
−πi

β
ntfor anti-periodic boundary condition (A.7)
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A.1 Zeta function

We will need the following results for our calculation,

ζ(s) =

∞∑

n=1

n−s

ζ(s)′ = −
∞∑

n=1

n−s ln(n)

ζodd(s) =

∞∑

n=1,n=odd

n−s

= (1 − 2−s)ζ(s)

ζodd(s) = −
∞∑

n=1,n=odd

n−s ln(n)

= 2−s ln2 ζ(s) + (1 − 2−s)ζ(s)′ (A.8)

and ζ(0) = −1
2 , ζ(0)′ = −1

2 ln(2π). Which gives ζodd(0) = 0 and ζodd(0)′ = −1
2 ln(2).

A.2 Super-symmetric (N = 2) 1D harmonic oscillator

Consider the SUSY Harmonic Oscillator at finite temperature with action,

S =

∫ β

0
dt

(
ẋ2

2
− ψ∗ψ̇ +

x2

2
+ ψ∗ψ

)
(A.9)

Where the SUSY transformation is given by,

δx = ǫ∗ψ + ψ∗ǫ; δψ∗ = −ǫ∗(ẋ+ x); δψ = −ǫ(−ẋ+ x). (A.10)

With periodic boundary condition on both x and ψ,

S =
1

2
βx2

0 + β
∞∑

n=1

(
1 +

4π2n2

β2

)
xnx−n + βψ∗

0ψ0 +
∞∑

n=1

(β + 2πin)ψ∗
nψn

+

∞∑

n=1

(β − 2πin)ψ∗
−nψ−n (A.11)

So integrating by using the measure defined the partition function is,

Z =

∫
Dx Dψ∗Dψ e−S

=

√
2π

β
×

∞∏

n=1

{
2π

β(1 + 4π2n2

β2 )

}
× β ×

∞∏

n=1

(β + 2πin) ×
∞∏

n=1

(β − 2πin)

= 1 (A.12)

Using
∏∞

n=1C = Cζ(0) = C−1/2, where C is any constant number.
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If we keep periodic boundary condition on x,but take anti-periodic boundary condition

on ψ,the Super-symmetry breaks and

S =
1

2
βx2

0 + β
∞∑

n=1

(
1 +

4π2n2

β2

)
xnx−n +

∞∑

n=1,n=odd

(β + πin)ψ∗
nψn

+

∞∑

n=1,n=odd

(β − πin)ψ∗
−nψ−n (A.13)

So integrating by using the measure defined the partition function is,

Z ′ =

∫
Dx Dψ∗Dψ e−S

=

√
2π

β
×

∞∏

n=1

{
2π

β(1 + 4π2n2

β2 )

}
×

∞∏

m=1,odd

(β + πim) ×
∞∏

m=1,odd

(β − πim) (A.14)

Now rearranging the products and using ζ function to regularise the infinite products, (i.e.

using
∏∞

n=1 C = C−1/2,
∏∞

n=1 n =
√

2π,
∏∞

n=1,oddC = 1,
∏∞

n=1,odd n =
√

2) we get,

Z ′ =

∏∞
k=0(1 + 4(β/2)2

π2(2k+1)2
)

β
2

∏∞
n=1(1 + (β/2)2

π2n2 )
= coth β/2 (A.15)

Using,
∏∞

k=0(1+ 4x2

π2(2k+1)2 ) = coshx and x
∏∞

n=1(1+ x2

π2n2 ) = sinhx. Also notice as β → ∞,

Z ′ → 1 i.e. Super-symmetry is restored in the zero temperature limit.

B. Calculation for massless bosonic field theory on S
1 × S

1

S = (2πL∗
9β)

β

2gsls

∞∑

n=−∞

∞∑

m=−∞

[
4π2n2

β2
+
m2

L∗2
9

]
XnmX

∗
nm (B.1)

= (2πL∗
9β)

β

gsls

∞∑

n=1

∞∑

m=1

{[
4π2n2

β2
+
m2

L∗2
9

]
[XnmX

∗
nm +Xn−mX

∗
n−m]

}

+(2πL∗
9β)

β

gsls

∞∑

n=1

4π2n2

β2
Xn0X

∗
n0 + (2πL∗

9β)
β

gsls

∞∑

m=1

m2

L∗2
9

X0mX
∗
0m

Z =

(∫ ∞

−∞
dX00

)( ∞∏

n=1

∞∏

m=1

∫ ∞

−∞
dXnmdX

∗
nme

−(2πL∗

9
β) β

gsls

»
4π2n2

β2
+ m2

L∗2
9

–
XnmX∗

nm

)

(
∞∏

n=1

∞∏

m=1

∫ ∞

−∞
dXn−mdX

∗
n−me

−(2πL∗

9
β) β

gsls
[ 4π2n2

β2
+ m2

L∗2
9

]Xn−mX∗

n−m

)

(
∞∏

n=1

∫ ∞

−∞
dXn0dX

∗
n0e

−(2πL∗

9
β) β

gsls
4π2n2

β2
Xn0X∗

n0

)

(
∞∏

m=1

∫ ∞

−∞
dX0mdX

∗
0me

−(2πL∗

9
β) β

gsls
m2

L∗2
9

X0mX∗

0m

)
(B.2)
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The zero mode integral diverges. So we put a cut-off L0√
2πL∗

9
β

as the value of zero mode

integral.

Z =

(
L0√

2πL∗
9β

) ∞∏

n=1

∞∏

m=1

{
2π

(2πL∗
9β) β

gsls
(4π2n2

β2 + m2

L∗2
9

)

}2

×
∞∏

n=1

{
2π

(2πL∗
9β) β

gsls
4π2n2

β2

}
×

∞∏

m=1

{
2π

(2πL∗
9β) β

gsls
m2

L∗2
9

}
(B.3)

Using
∏∞

n=1 c = cζ(0) = c−1/2, if we take out the constant factor (2πL∗
9β) from the products,

it cancels nicely with the factor in zero mode integral. These products can be rearranged

to get,

Z =

{
L0

∞∏

n=1

2π
β

gsls
(4π2n2

β2 )

}

free particle with mass= 1

gsls

×




∞∏

m=1



√√√√ 2π

β
gsls

( m2

L∗2
9

)

∞∏

n=1

2π

β
gsls

(
4π2n2

β2 + m2

L∗2

9

)




SHO,mass= 1

gsls
freq.= m

L∗

9





2

(B.4)

therefore,

Z = L0

√(
M

2πβ

) ∞∏

m=1

{
1

2 sinh(βωm/2)

}2

(B.5)

where,

M =
1

gsls
, ωm =

m

L∗
9

(B.6)

Using,

η(ix) =

∞∏

k=1

(2 sinh(πkx)) (B.7)

where η(z) is Dedekind’s eta function. We get,

Z =
L0√

(2πgslsβ)
η

(
iβ

2πL∗
9

)−2

(B.8)

For low temperature, β
2πL∗

9

≫ 1, the free energy takes the form,

F (T ) = − 1

β
ln(Z) ≃ − 1

12L∗
9

− 1

2
T ln

(
L2

0

2πgsls
T

)
(B.9)

which shows F (0) 6= 0 due to the presence of zero-point energy,

F (0) = − 1

12L∗
9

=

∞∑

n=1

n

L∗
9

(B.10)
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using Zeta function regularization. The high temperature expansion, β
2πL8

9

≪ 1 is given as,

F (T ) = −π
2L∗

9T
2

3
+
T

2
ln

(
8π3gslsL

∗2
9

L2
0

T

)
(B.11)

C. Calculation for fermionic part of SUSY scalar field theory

SF = SF1 + SF2 = − β

2gsls

∞∑

n=−∞,n=odd

∞∑

m=−∞

{
i
√

(2πL∗
9β)
[πn
β

+ i
m

L∗
9

]
ψ1,nmψ1,−n−m

+i
√

(2πL∗
9β)
[πn
β

− i
m

L∗
9

]
ψ2,nmψ2,−n−m

}
(C.1)

By rearranging the sum (we have dropped the index 1 or 2 in ψ),

SF1 = − β

gsls

√
2πL∗

9β

{ ∞∑

n,m=1,n=odd

(
πn

β
+ i

m

L∗
9

)
ψnm iψ−n−m

+

∞∑

n,m=1,n=odd

(
πn

β
− i

m

L∗
9

)
ψn−m iψ − nm

+
∞∑

n=1,odd

πn

β
ψn0iψ−n0

}
(C.2)

Therefore,

ZF1 =

{ ∞∏

n=1,odd

C
πn

β

}{ ∞∏

n=1,odd

∞∏

m=1

C2

(
π2n2

β2
+
m2

L∗2
9

)}
(C.3)

where, C = β
gsls

√
2πL∗

9β

Using,
∏∞

n=1,oddC = Cζodd(0) = 1,
∏∞

n=1,odd n = e−ζ′
odd

(0) =
√

2 and rearranging the

products we get,

ZF1 =
√

2

∞∏

n=1,odd

∞∏

m=1


1 +

(
π2L∗

9
n

β )2

π2m2


 (C.4)

Using, sinh(x)
x =

∏∞
k=1(1 + x2

π2n2 ) we get,

ZF1 =

∞∏

n=1,odd

sinh

(
π2L∗

9n

β

)

=

∏∞
n=1 2 sinh(

π2L∗

9
n

β )
∏∞

n=1 2 sinh(
2π2L∗

9
n

β )

=
η(i

πL∗

9

β )

η(i
2πL∗

9

β )

=
η(i 1

2x )

η(i 1x)
(C.5)
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Where x = β
2πL∗

9

, and using property of Dedekind eta function,we get,

ZF1 =
√

2
η(2ix)

η(ix)
(C.6)

D. Review of background gauge fixing method

Consider dimensionally reduced Maximally Super-symmetric Yang-Mills theory in 10 di-

mensions to 2 dimension. The Lagrangian is given by,

L =
1

g2
YM

Tr(−(DµA
i)2 + θTD/θ − 1

2
F 2

µν − 1

2
[Ai, Aj ]2 + θTγi[A

i, θ]) (D.1)

Where i = 1, . . . 8 and µ, ν = 0, 9. The metric is ηµ,ν = (−1, 1, 1 . . . , 1). θ is 16 component

Maiorana Spinor and γ matrices obey 10-dimensional Clifford Algebra. Let us consider,

Aµ = aµ +A′
µ

Ai = ai +A′
i

θ = Θ + θ′ (D.2)

Where aµ, ai,Θ are background fields obeying classical equation of motion. Let us define

a new covariant derivative as D̄µ = ∂µ + iaµ. The primed fields are quantum fluctuations

which is integrated out for calculation of partition function. Also,

Fµν = F̄µν + (D̄µA
′
ν − D̄νA

′
µ) + i[A′

µ, A
′
ν ] (D.3)

where, F̄µν = ∂µaν − ∂νaµ + i[aµ, aν ].

Now the allowed gauge transformation is the ones which keep the background un-

changed, i.e. δaµ = δai = δΘ = 0. Then the gauge transformation on the fluctuations are

given by,

δA′
µ = D̄µα+ i[A′

µ, α]

δA′
i = i[A′

i, α]

δθ′ = i[θ′, α] (D.4)

Let us choose ai = 0 and Θ = 0.

The gauge fixing condition we use is,

D̄µA
µ′ = 0 (D.5)

therefore the Gauge fixing Lagrangian,

Lgf = − 1

2g2
YM

Tr(D̄µA
µ′)2 (D.6)

and the ghost Lagrangian,

Lgh = Tr(ω̄D̄µD̄
µω + iω̄D̄µ[Aµ′, ω]) (D.7)
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Where ω and ω̄ are ghost and anti ghost respectively. The background for ghost fields are

taken to be zero.

Now we calculate the Lagrangian up to 1-loop level,i.e. we keep terms up to quadratic

in fluctuations. And we also use classical equation of motion for background fields. We get,

L1loop =
1

2g2
YM

Tr

(
A′iD̄2A′i −A′

0D̄
2A′

0 +A′
9D̄

2A′
9 + θ′T D̄/θ′

−1

2
F̄ 2

µν − iF̄µνA′
µA

′
ν

)
+ ω̄D̄2ω (D.8)

Let us choose a0 = 0 and a9 = constant, then F̄µν = 0. Also scale ω properly, we get,

L1loop =
1

2g2
YM

Tr(A′iD̄2A′i −A′
0D̄

2A′
0 +A′

9D̄
2A′

9 + θ′T D̄/θ′ + ω̄D̄2ω) (D.9)

The Euclidean partition function is given by,

lnZ =
10

2
Tr(lnD̄2)bosonic −

16

4
Tr(lnD̄2)fermionic − Tr(lnD̄2)ghost (D.10)
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